Skip to contents

Note that this package is a work in progress! New data will be added as soon as they become available.

Si desea leer estas instrucciones en español haga clic en español, por favor

Datasets with enriched metadata

The main goal of pRycollection is to provide datasets about Paraguay for research and teaching that are not easily found or accessible. pRycollection is a combination of the 3-letter code for Paraguay - PRY - and the word collection. The 3-letter code was chosen to avoid possible confusion with the programming language Python (py).

Installation

You can install the development version of pRycollection from GitHub with:

# install.packages("pak")
pak::pak("schneiderpy/pRycollection")

# load pRycollection
library(pRycollection)

About the data

The pRycollection data package was build from the beginning with FAIR principles in mind. FAIR stands for Findable, Accessible, Interoperable, and Reusable. These principles are critical to maximizing the impact and value of data in research and practice.

The raw data is hosted on Zenodo

To see what datasets are included in the package load the pRycollection data package and the dataset package (to access metadata). Then type the following code line:

data(package = "pRycollection")

This will open a new tab in your source pane listing all available datasets.

Available datasets

Examples

This is a basic example which shows you how to use pRycollection. Let’s use the py_temperature dataset.

A summary of the chosen dataset.

summary(py_temperature)
#> Schneider (2025): Summary of Weekly mean temperature data [dataset], https://doi.org/10.5281/zenodo.16729963
#> 
#> Country name
#> Country ISO code
#> Mean temperature (degrees Celsius)
#> Holiday indicator
#>     rowid             country              ISO                 city  
#>  Length:1565        Length:1565        Length:1565        Min.   :1  
#>  Class :character   Class :character   Class :character   1st Qu.:2  
#>  Mode  :character   Mode  :character   Mode  :character   Median :3  
#>                                                           Mean   :3  
#>                                                           3rd Qu.:4  
#>                                                           Max.   :5  
#>       week               avg_temp         holiday      
#>  Min.   :2016-01-04   Min.   : 9.329   Min.   :0.0000  
#>  1st Qu.:2017-07-03   1st Qu.:20.043   1st Qu.:0.0000  
#>  Median :2018-12-31   Median :24.214   Median :0.0000  
#>  Mean   :2018-12-31   Mean   :23.280   Mean   :0.1885  
#>  3rd Qu.:2020-06-29   3rd Qu.:26.529   3rd Qu.:0.0000  
#>  Max.   :2021-12-27   Max.   :32.000   Max.   :1.0000

The first six rows of the dataset …

head(py_temperature)
#> Schneider (2025): Weekly mean temperature data [dataset], https://doi.org/10.5281/zenodo.16729963
#>   rowid     country   ISO       city         week       avg_temp  holiday   
#>   <defined> <defined> <defined> <defined>    <dttm_dfn> <defined> <defined>
#> 1 obs:1     Paraguay  PY        1 [Asuncion] 2016-01-04 27.8      0        
#> 2 obs:2     Paraguay  PY        1 [Asuncion] 2016-01-11 30.3      0        
#> 3 obs:3     Paraguay  PY        1 [Asuncion] 2016-01-18 29.9      0        
#> 4 obs:4     Paraguay  PY        1 [Asuncion] 2016-01-25 27.3      1        
#> 5 obs:5     Paraguay  PY        1 [Asuncion] 2016-02-01 26.6      0        
#> 6 obs:6     Paraguay  PY        1 [Asuncion] 2016-02-08 30.1      0

… the dimensions of the dataset …

dim(py_temperature)
#> [1] 1565    7

Citation

To cite the pRycollection package or datasets, please use:

citation("pRycollection")
#> To cite pRycollection in publications please use:
#> 
#>   Schneider A (2025). _pRycollection: Diverse datasets from Paraguay_.
#>   R package version 0.0.1,
#>   <https://github.com/schneiderpy/pRycollection/>.
#> 
#> Please also cite the related data package:
#> 
#>   Schneider A (2025). "pRydata: Diverse datasets from Paraguay."
#>   doi:10.5281/zenodo.16729963
#>   <https://doi.org/10.5281/zenodo.16729963>.
#> 
#> To see these entries in BibTeX format, use 'print(<citation>,
#> bibtex=TRUE)', 'toBibtex(.)', or set
#> 'options(citation.bibtex.max=999)'.