You can get all available datasets at once in a .csv format from the Zenodo repository. Make sure you have the frictionless r package installed before proceeding.
#install.package("frictionless")
library(frictionless)
# Read data from datapackage.json
pRydata <- frictionless::read_package(
"https://zenodo.org/records/16744968/files/datapackage.json"
)
pRydata
#> A Data Package with 6 resources:
#> • py_creditcoops
#> • py_deathcauses
#> • py_weather
#> • py_weekly_crime
#> • py_temperature
#> • py_streetcrime
#> Use `unclass()` to print the Data Package as a list.
Calling the variable pRydata
gives you all datasets.
Select the data you are interested in as follow and print the first six
rows of the py_temperature
data.
py_temperature <- read_resource(pRydata, "py_temperature")
head(py_temperature)
#> # A tibble: 6 × 6
#> country ISO city week avg_temp holiday
#> <chr> <chr> <fct> <chr> <dbl> <dbl>
#> 1 Paraguay PY Asuncion 1/4/2016 27.8 0
#> 2 Paraguay PY Asuncion 1/11/2016 30.3 0
#> 3 Paraguay PY Asuncion 1/18/2016 29.9 0
#> 4 Paraguay PY Asuncion 1/25/2016 27.3 1
#> 5 Paraguay PY Asuncion 2/1/2016 26.6 0
#> 6 Paraguay PY Asuncion 2/8/2016 30.1 0
All datasets have additional metadata, but stored in a separate
json
file. If you are interested in the schema type the
following two lines of code:
temp_schema <- pRydata |>
get_schema("py_temperature")
str(temp_schema)
#> List of 1
#> $ fields:List of 6
#> ..$ :List of 3
#> .. ..$ name : chr "country"
#> .. ..$ type : chr "string"
#> .. ..$ description: chr "Country name"
#> ..$ :List of 3
#> .. ..$ name : chr "ISO"
#> .. ..$ type : chr "string"
#> .. ..$ description: chr "ISO code"
#> ..$ :List of 4
#> .. ..$ name : chr "city"
#> .. ..$ type : chr "string"
#> .. ..$ constraints:List of 1
#> .. .. ..$ enum: chr [1:5] "Asuncion" "Capiata" "Ciudad del Este" "Luque" ...
#> .. ..$ description: chr "City name."
#> ..$ :List of 3
#> .. ..$ name : chr "week"
#> .. ..$ type : chr "string"
#> .. ..$ description: chr "Date as week."
#> ..$ :List of 3
#> .. ..$ name : chr "avg_temp"
#> .. ..$ type : chr "number"
#> .. ..$ description: chr "Average temperature of the week."
#> ..$ :List of 3
#> .. ..$ name : chr "holiday"
#> .. ..$ type : chr "number"
#> .. ..$ description: chr "Dummy variable if the week has a holiday."
If you use the package or any dataset from this package, please cite the package or dataset.
citation("pRycollection")
#> To cite pRycollection in publications please use:
#>
#> Schneider A (2025). _pRycollection: Diverse datasets from Paraguay_.
#> R package version 0.0.1,
#> <https://github.com/schneiderpy/pRycollection/>.
#>
#> Please also cite the related data package:
#>
#> Schneider A (2025). "pRydata: Diverse datasets from Paraguay."
#> doi:10.5281/zenodo.16729963
#> <https://doi.org/10.5281/zenodo.16729963>.
#>
#> To see these entries in BibTeX format, use 'print(<citation>,
#> bibtex=TRUE)', 'toBibtex(.)', or set
#> 'options(citation.bibtex.max=999)'.